Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hong-Mei Zhang, Li-Ping Lu,* Si-Si Feng, Shi-Dong Qin and Miao-Li Zhu*

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University,
Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: luliping@sxu.edu.cn, miaoli@sxu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.019 \AA$
R factor $=0.098$
$w R$ factor $=0.253$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-hydroxo-bis[aqua(1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)copper(II)] terephthalate octahydrate

The title compound, $\left[\mathrm{Cu}_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ $\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$, was prepared by the hydrothermal reaction of $\mathrm{CuCl}_{2}, 1,10$-phenanthroline, terephthalic acid and water at 443 K . It consists of a double-hydroxo-bridged dinuclear complex cation $[\mathrm{Cu} \cdots \mathrm{Cu}=2.911$ (3) \AA] , a terephthalate anion and eight water molecules. Both cation and anion possess inversion symmetry. A network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds stabilizes the structure.

Comment

In recent years, the design and synthesis of coordination polymers has attracted much attention, due to their potential application in catalysis, ion exchange and gas adsorption (Eddaoudi et al.,2002; Moulton \& Zaworotko, 2001). As a multidentate bridging ligand, terephthalic acid (ta^{2-}) has been much used in this field because of its ability to form short metal-metal bridges via one carboxylate end group or long bridges via the intervening benzene ring (Ma et al., 2003; Zhang et al., 2003; Yuan et al., 2003). Numerous complexes with the ta^{2-} ligand have been reported (Hagrman et al., 1999; Li et al., 1999; Groenman et al., 1999), while new complexes are constantly being synthesized. We report here another such structure, the title compound, (I) (Fig. 1), consisting of an uncoordinated ta ${ }^{2-}$ anion, a $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ dinuclear cation and water molecules of crystallization. Both cation and anion are generated by inversion symmetry from the atoms of the asymmetric unit.

(I)

In the $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ cation of (I), the Cu^{2+} environment is that of a distorted square pyramid, composed of two phen N atoms and two O atoms of bridging hydroxide groups at the corners of the basal square and a fifth weakly coordinated water molecule at the apical position. Because of inversion symmetry, the two apical water molecules are in a trans conformation. This dinuclear cation is similar to others reported previously (Zheng et al., 2000; Lu et al., 2003, 2004). The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 2.911 (3) \AA in (I) is longer than that found in $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

Received 21 April 2005 Accepted 26 April 2005 Online 7 May 2005

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii. Unlabelled atoms in the cation and anion are related to labelled atoms by the symmetry operators $(1-x, 2-y, 2-z)$ and $(-x, 1-y, 2-z)$, respectively.
[2.902 (1) Aं; Zheng et al., 2000; Lu et al., 2004] and shorter than that found [2.933 (1) Å] by Lu et al. (2003).

The hydrogen-bonding geometry in (I) is listed in Table 2 and illustrated in Fig. 2. These $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ cations and ta ${ }^{2-}$ anions, as well as uncoordinated water molecules, resulting in a threedimensional network.

Experimental

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification. A mixture of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.0851 \mathrm{~g}$, $0.5 \mathrm{mmol}), 1,10$-phenanthroline $(0.0992 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}$ $(15 \mathrm{ml})$ was stirred for 35 min at 323 K . The mixture and terephthalic acid $(0.0801 \mathrm{~g}, 0.5 \mathrm{mmol})$ were then sealed in a 20 ml Teflon-lined autoclave and heated at 443 K for 86 h . After cooling, blue crystals of (I) were recovered.

Crystal data

$\left[\mathrm{Cu}_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]-$	$Z=1$
$\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.609 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=865.78$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 279
$a=9.295(4) \AA$	reflections
$b=10.639(5) \AA$	$\theta=2.2-17.9^{\circ}$
$c=11.258(5) \AA$	$\mu=1.27 \mathrm{~mm}^{-1}$
$\alpha=114.603(8)^{\circ}$	$T=298(2) \mathrm{K}$
$\beta=112.540(8)^{\circ}$	Plate, blue
$\gamma=95.065(8)^{\circ}$	$0.20 \times 0.20 \times 0.01 \mathrm{~mm}$
$V=893.2(7) \AA^{\circ}$	
Data collection	
Bruker SMART 1K CCD area-	2960 independent reflections
\quad detector diffractometer	1399 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.107$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
$(S A D A B S ;$ Sheldrick, 2000)	$h=-11 \rightarrow 10$
$T_{\text {min }}=0.785, T_{\text {max }}=0.987$	$k=-12 \rightarrow 12$
4159 measured reflections	$l=-8 \rightarrow 13$

Figure 2
The packing of (I), with dashed lines indicating hydrogen bonds.

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.098$
$w R\left(F^{2}\right)=0.253$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1026 P)^{2}\right]$
$S=0.84$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
2960 reflections
$(\Delta / \sigma)_{\max }<0.001$
244 parameters
$\Delta \rho_{\text {max }}=0.59 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.83$ e \AA^{-3}

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.925(7)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.024(9)$
$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.930(7)$	$\mathrm{Cu} 1-\mathrm{O} 4$	$2.427(9)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.023(10)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$81.9(3)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$84.0(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$94.7(4)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$99.4(3)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	$167.6(3)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 4$	$99.3(3)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$166.7(3)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 4$	$93.0(3)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$96.5(4)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$93.9(3)$

Symmetry code: (i) $-x+1,-y+2,-z+2$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O8-H82 $\cdots \mathrm{O}^{\text {ii }}$	0.84	2.34	2.783 (13)	113
O7-H72 ${ }^{\text {O }}$ O6 ${ }^{\text {iii }}$	0.82	2.08	2.822 (12)	149
$\mathrm{O} 7-\mathrm{H} 71 \cdots \mathrm{O} 3^{\text {iv }}$	0.81	2.24	2.713 (12)	118
O6-H61 . $\mathrm{O}^{\text {iii }}$	0.82	2.17	2.828 (12)	138
$\mathrm{O} 5-\mathrm{H} 52 \cdots \mathrm{O} 2^{\text {iv }}$	0.82	2.10	2.802 (12)	144
$\mathrm{O} 5-\mathrm{H} 51 \cdots \mathrm{O}^{\text {v }}$	0.82	2.30	3.088 (13)	161
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 6^{\text {iii }}$	0.83	2.19	2.983 (13)	160
$\mathrm{O} 1-\mathrm{H} 13 \cdots \mathrm{O} 7$	0.83	1.96	2.756 (11)	159

Symmetry codes: (ii) $x+1, y, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $x, y, z-1$.

H atoms attached to C atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $\left.1.2 U_{\text {eq }}(\mathrm{C})\right] . \mathrm{H}$ atoms attached to O were located in a difference Fourier map, relocated in idealized positions ($\mathrm{O}-\mathrm{H}=0.80-0.84 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

This work was supported financially by the National Natural Science Foundation of China (grant No. 20471033), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2002 for MLZ.

References

Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. \& Yaghi, O. M. (2002). Science, 295, 469-472.

Groenman, R. H., MacGillivery, L. R. \& Atwood, J. L. (1999). Inorg. Chem. 38, 208-209.
Hagrman, D., Hagrman, P. J. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 3165-3168.
Li, H., Eddaoudi, M., O'Keeffe, M. \& Yaghi, O. M. (1999). Nature (London), 402, 276-279.
Lu, L.-P., Qin, S.-D., Yang, P. \& Zhu, M.-L. (2004). Acta Cryst. E60, m950m952.
Lu, L.-P., Zhu, M.-L. \& Yang, P. (2003). J. Inorg. Biochem. 95, 31-36.
Ma, C. B., Chen, C. N., Liu, Q. T., Liao, D. Z., Li, L. C. \& Sun, L. C. (2003). New J. Chem. 27, 890-894.

Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Yuan, M., Wang, E. B., Lu, Y., Wang, S. T., Li, Y. G., Wang, L. \& Hu, C. W. (2003). Inorg. Chim. Acta, 344, 257-261.

Zhang, X. M., Tong, M. L., Gong, M. L. \& Chen, X. M. (2003). Eur. J. Inorg. Chem. 1, 138-142.
Zheng, Y.-Q., Sun, J. \& Lin, J.-L. (2000). Z. Anorg. Allg. Chem. 626, 613-615.

